Magnet Neodym

Grade
(Tip)
Residual magnetism Coercive field strength Energy product Max.
operational
temp.
(Temperatura maxima
de lucru)
Remanenta
Br
Forta coercitiva
bHc
Forta coercitiva intrinseca
iHc
Produs energetic maxim
(BxH) max
Gauss (G) Tesla (T) kOe kA/m kOe kA/m MGOe kJ/m³ °C
N30 10800-11200 1.08-1.12 9.8-10.5 780-836 ≥12 ≥955 28-30 223-239 ≤80
N33 11400-11700 1.14-1.17 10.3-11 820-876 ≥12 ≥955 31-33 247-263 ≤80
N35 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥12 ≥955 33-35 263-279 ≤80
N38 12200-12600 1.22-1.26 10.8-11.5 860-915 ≥12 ≥955 36-38 287-303 ≤80
N40 12600-12900 1.26-1.29 10.5-12.0 860-955 ≥12 ≥955 38-40 303-318 ≤80
N42 12900-13200 1.29-1.32 10.8-12.0 860-955 ≥12 ≥955 40-42 318-334 ≤80
N45 13200-13700 1.32-1.37 10.8-12.5 860-995 ≥12 ≥955 43-45 342-358 ≤80
N48 13700-14200 1.37-1.42 10.8-12.5 860-995 ≥12 ≥955 45-48 358-382 ≤80
N50 14000-14600 1.40-1.46 10.8-12.5 860-995 ≥12 ≥955 47-51 374-406 ≤80
N52 14200-14700 1.42-1.47 10.8-12.5 860-995 ≥12 ≥955 48-53 380-422 ≤80
30M 10800-11200 1.08-1.12 9.8-10.5 780-836 ≥14 ≥1114 28-30 223-239 ≤100
33M 11400-11700 1.14-1.17 10.3-11 820-876 ≥14 ≥1114 31-33 247-263 ≤100
35M 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥14 ≥1114 33-35 263-279 ≤100
38M 12200-12600 1.22-1.26 10.8-11.5 860-915 ≥14 ≥1114 36-38 287-303 ≤100
40M 12600-12900 1.26-1.29 10.8-12 860-955 ≥14 ≥1114 38-40 303-318 ≤100
42M 12900-13200 1.29-1.32 10.8-12.5 860-995 ≥14 ≥1114 40-42 318-334 ≤100
45M 13200-13700 1.32-1.37 10.8-13 860-1035 ≥14 ≥1114 43-45 342-358 ≤100
48M 13700-14200 1.37-1.42 10.8-12.5 860-995 ≥14 ≥1114 45-48 358-382 ≤100
50M 14000-14600 1.40-1.46 10.8-12.5 860-995 ≥14 ≥1114 47-51 374-406 ≤100
27H 10200-10600 1.02-1.06 9.5-10.1 756-804 ≥17 ≥1353 25-27 199-215 ≤120
30H 10800-11200 1.08-1.12 10.1-10.6 804-844 ≥17 ≥1353 28-30 223-239 ≤120
33H 11400-11700 1.14-1.17 10.3-11 820-876 ≥17 ≥1353 31-33 247-263 ≤120
35H 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥17 ≥1353 33-35 263-279 ≤120
38H 12200-12600 1.22-1.26 10.8-11.5 860-915 ≥17 ≥1353 36-38 287-303 ≤120
40H 12600-12900 1.26-1.29 10.8-12 860-955 ≥17 ≥1353 38-40 303-318 ≤120
42H 12900-13200 1.29-1.32 10.8-12 860-955 ≥17 ≥1353 40-42 318-334 ≤120
44H 13200-13600 1.32-1.36 10.8-13 860-1035 ≥17 ≥1353 42-44 334-350 ≤120
48H 13700-14200 1.37-1.42 10.8-12.5 860-995 ≥17 ≥1353 45-48 358-382 ≤120
27SH 10200-10600 1.02-1.06 9.5-10.1 756-804 ≥20 ≥1592 25-27 199-215 ≤150
30SH 10800-11200 1.08-1.12 10.1-10.6 804-844 ≥20 ≥1592 28-30 223-239 ≤150
33SH 11400-11700 1.14-1.17 10.3-11 820-876 ≥20 ≥1592 31-33 247-263 ≤150
35SH 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥20 ≥1592 33-35 263-279 ≤150
38SH 12200-12600 1.22-1.26 10.8-11.5 860-915 ≥20 ≥1592 36-38 287-303 ≤150
40SH 12600-12900 1.26-1.29 10.8-12.0 860-955 ≥20 ≥1592 38-40 303-318 ≤150
42SH 12900-13200 1.29-1.32 10.8-12 860-955 ≥20 ≥1592 40-42 318-334 ≤150
45SH 13200-13700 1.32-1.37 10.8-12.5 860-955 ≥20 ≥1592 43-45 342-358 ≤150
25UH 9800-10200 0.98-1.02 9.2-9.6 732-764 ≥25 ≥1990 23-25 183-199 ≤180
28UH 10400-10800 1.04-1.08 9.8-10.2 780-812 ≥25 ≥1990 26-28 207-233 ≤180
30UH 10800-11200 1.08-1.12 10.1-10.6 804-844 ≥25 ≥1990 28-30 223-239 ≤180
33UH 11400-11700 1.14-1.17 10.3-11 820-876 ≥25 ≥1990 31-33 247-263 ≤180
35UH 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥25 ≥1990 33-35 263-279 ≤180
38UH 12200-12600 1.22-1.26 10.8-11.5 860-915 ≥25 ≥1990 36-38 287-303 ≤180
40UH 12600-12900 1.26-1.29 10.5-12.0 860-955 ≥25 ≥1990 38-40 303-318 ≤180
25EH 9800-10200 0.98-1.02 9.2-9.6 732-764 ≥30 ≥2388 23-25 183-199 ≤200
28EH 10400-10800 1.04-1.08 9.8-10.2 780-812 ≥30 ≥2388 26-28 207-223 ≤200
30EH 10800-11200 1.08-1.12 10.1-10.6 804-844 ≥30 ≥2388 28-30 223-239 ≤200
33EH 11400-11700 1.14-1.17 10.3-11 820-876 ≥30 ≥2388 31-33 247-263 ≤200
35EH 11700-12100 1.17-1.21 10.8-11.5 860-915 ≥30 ≥2388 33-35 263-279 ≤200

 

Magnet Ferita

Grade
(Tip)
Residual magnetism Coercive field strength Energy product Max.
operational
temp.
(Temperatura maxima
de lucru)
Remanenta
Br
Forta coercitiva
bHc
Forta coercitiva intrinseca
iHc
Produs energetic maxim
(BxH) max
Gauss (G) Tesla (T) kOe kA/m kOe kA/m MGOe kJ/m³ °C
Y35 4000-4100 0.40-0.41 2.20-2.45 175-195 2.26-2.51 180-200 3.8-4.0 30.0-32.0 ≤250

 

Foi si benzi magnetice

Grade
(Tip)
Residual magnetism Coercive field strength Energy product Max.
operational
temp.
(Temperatura maxima
de lucru)
Remanenta
Br
Forta coercitiva
bHc
Forta coercitiva intrinseca
iHc
Produs energetic maxim
(BxH) max
Gauss (G) Tesla (T) kOe kA/m kOe kA/m MGOe kJ/m³ °C
MT-XX 2300-2600 0.23-0.26 2.1-2.3 167-183 2.4-3.5 191-278 1.3-1.6 10.4-12.8 ≤80
MT-XX-STIC 2100-2400 0.21-0.24 1.7-2.0 135-160 2.3-3.2 184-255 1.0-1.2 8.0-9.6 ≤80
MT-DISP 1600-2100 0.16-0.21 1.3-1.7 104-135 2.1-3.0 167-239 0.6-0.8 4.8-6.4 ≤80
MS-XX 2300-2600 0.23-0.26 2.1-2.3 167-183 2.4-3.5 191-278 1.3-1.6 10.4-12.8 ≤80
MS-XX-STIC 2100-2400 0.21-0.24 1.7-2.0 135-160 2.3-3.2 184-255 1.0-1.2 8.0-9.6 ≤80
CP-XXXX 1600-2100 0.16-0.21 1.3-1.7 104-135 2.1-3.0 167-239 0.6-0.8 4.8-6.4 ≤80

Intrebari frecvente

 

What do the specifications N42, N45, N50, etc. mean? Ce inseamna specificatiile N42, N4, N50?

The specifications N40, N42, N45, 35H etc. is a measurement for the quality of the magnet material.
This tells you two things:
1. How much „magnetic energy” per volume is contained in this magnet material
2. Up to what temperature the magnet can be used
The numbers (e.g., 40, 42, 45) are equivalent to approximately the maximum energy product of the magnet (in MGOe).
The letters N, M, H, SH, UH or EH say something about the maximum working temperature, which can be 80, 100, 120, 150, 180 or 200 °C. Most of our magnets begin with an „N” and should be used at 80 °C.
When we speak colloquially about the „power” of a magnet, we usually mean either the adhesive force on direct contact with a metal plate or the attractive force to a piece of iron (or another magnet) at a certain distance.
The power is not only determined by the magnetic material used; equally important are the following factors:

  • Volume of the magnet
  • Form of the magnet
  • Proportions of the magnet (e.g. the ratio of the diameter to the height of a disc magnet)
  • Combination with other materials, e.g. is the magnet mounted on a piece of metal, in a metal pot, or is it „free-standing”.

This is similarly true in relationship to the working temperature. The specified maximum temperature can only be used without a problem when the aspect ratio of the magnet is „ideal”. If a magnet is, for example, very thin in relation to its diameter (or side length), the maximum temperature is reached earlier.
If you take any two magnets of different sizes and magnetisation from our collection, the difference in their strength is more due to the differences in their volume than the differences in their magnetisation. That’s why the larger magnet is mostly the stronger magnet, even when its magnetisation classification is somewhat smaller.

As a practical sample:

  • Characteristic Nxx indicates the maximum magnetic energy of a magnet, expressed in MGOe (eg. Between 33-36 for N35). As the figure after letter N is higher, the magnet is also more powerful for the same size. A magnet with N48 is more powerful than N35 with above 15%, a manget with N52 is more powerful than N35 with about 21%. However, depending the usage, the adherence force can be compensated with volume – a magnet with N52 can be weaker than N35, but that has a higher volume with 21%.
  • Suffix EH from N35EH indicates the maximum temperature tolerated of 200 Celsius degrees. If the code has no suffix (simple N48) it means that magnets resist until the standard temperature of 80 Celsius degrees.

 

Specificatiile N40, N42, N45, 35H etc. reprezinta o unitate de masura pentru calitatea materialului din care este facut magnetul. Aceasta va indica doua lucruri:
1. Cat de multa “energie magnetica” pe volum este retinuta in acest material magnetic
2. Pana la ce temperatura poate fi folosit magnetul
Numerele (ex., 40, 42, 45) sunt echivalentul aproximativ al produsului energetic maxim al magnetului (exprimat in MGOe).
Literele N, M, H, SH, UH sau EH indica temperatura maxima de lucru, care poate fi de 80, 100, 120, 150, 180 sau 200 °C. Majoritatea magnetilor nostri neodim contin litera N in numele modelului reprezentand temperatura optima de lucru de 80 °C.
Atunci cand vorbim despre puterea unui magnet, de obicei ne referim fie la forta de atractie a magnetului in contact direct cu o suprafa metalica fie la forta de atractie fata de o bucata de fier (sau un alt magnet) la o anumita distanta.
Puterea nu este determinata numai de materialul magnetic folosit; la fel de importanti sunt si urmatorii factori:

  • Dimensiunea magnetului
  • Forma magnetului
  • Marimile magnetului (ex.raportul dintre diametru si inaltime la un magnet de tip disc)
  • Combinarea cu alte materiale, un exemplu poate fi magnetul fixat pe o bucata de metal, in oala de metal, sau in forma libera.

Acest lucru este in mod asemanator valabil si in ceea ce priveste temperatura de lucru. Temperatura maxima specificata poate fi folosita fara probleme numai cand raportul dintre latimea si inaltimea magnetului sunt “ideale”. Daca un magnet este, de exemplu, foarte subtire in comparatie cu diametrul sau (sau cu lungimea), temperatura maxima este atinsa mai devreme.
Daca luati oricare doi magneti de dimensiuni si magnetizari diferite din colectia noastra, veti observa ca diferenta de putere se datoreaza mai mult diferentei de volum decat diferentei de magnetizare. De aceea, magnetii mari sunt de obicei si cei mai puternici, chiar daca se pot incadra intr-o clasa de magnetizare oarecum mai slaba.

Ca un exemplu practic:

  • Caracteristica Nxx indica produsul energetic maxim al magnetilor, exprimat in MGOe (de ex. intre 33 – 36 pentru N35). Cu cat este mai mare cifra dupa litera N, cu atat este magnetul mai puternic pentru aceeasi dimensiune. Un magnet cu N48 este mai puternic ca cel cu N35 cu cca. 15%, iar unul cu N52 fata de N35 cu cca. 21%. Totusi, in functie de utilizare, forta de aderenta poate fi compensata cu volumul – adica un magnet N52 poate sa fie mai slab decat unul N35, care insa este mai mare in volum cu peste 21%.
  • Sufixul EH din codul N35EH indica regimul de temparatura maxima tolerata de 200 grade Celsius. Daca codul nu are niciun sufix (N48), inseamna ca magnetii rezista pana la temperatura standard de 80 grade Celsius
What does remanence mean? Ce inseamna magnetizare reziduala (remanenta)?

Remanence Br is a measurement for the magnetic induction or magnetic flux density that, after successful magnetisation, remains in the magnet. Simply said: the higher this value is, the „stronger” the magnet.
T (Tesla) is used as the unit of measurement for magnetic induction and, respectively, magnetic flux density. The unit of measurement previously used was G (Gauss). 1 Tesla = 10 000 Gauss.
Magnetizarea reziduala (Br) este unitatea de masura pentru inductia magnetica sau pentru densitatea fluxului magnetic care, dupa magnetizare, ramane in magnet. Mai simplu spus: cu cat este mai mare aceasta valoare cu atat mai puternic este magnetul.
T (Tesla) este folosit ca unitate de masura pentru inductia magnetica, respectiv, densitatea fluxului magnetic. Unitatea de masura folosita anterior a fost G (Gauss). 1 Tesla = 10.000 Gauss.
What does coercive field strength mean? Ce inseamna puterea campului coercitiv?

Coercive field strength Hc describes the force that is necessary to completely demagnetise a magnet. Simply said: the higher this number is, the better a magnet retains its magnetism when exposed to an opposing magnetic field.
There are differences between the coercive field strength bHc of flux density and the coercive field strength jHc of polarisation. If a magnet is exposed to a demagnetising field strength of bHc, the magnetic flux density in the magnet disappears. The magnet itself is still magnetic, but the flux density that the magnet generated is contrarily exactly the same size as the flux density of the demagnetised field, so that the two cancel each other out. The magnet only loses its magnetic polarisation, and thus its total magnetism, by a demagnetising field strength of jHc.
The standard unit of measurement used for a magnetic field strength is A/m (Ampere per metre). You will also often see the old standard measurement, Oe (Oersted).
Puterea campului coercitiv (Hc) descrie forta necesara pentru a demagnetiza complet un magnet. Mai simplu spus: cu cat este mai mare acest numar, cu atat mai mult un magnet isi pastreaza magnetizarea atunci cand este expus unui camp magnetic opus.
Exista diferente intre puterea campului coercitiv bHc a densitatii fluxului magnetic si puterea campului coercitiv jHc a polarizarii. Daca un magnet este expus puterii unui camp demagnetizant de bHc, densitatea fluxului magnetic dispare din magnet. Magnetul ramane inca magnetizat, dar densitatea fluxului generata de magnet este invers, exact aceeasi valoare cu densitatea fluxului campului demagnetizant, asa ca cele doua se anuleaza reciproc.Magnetul isi pierde numai polarizarea, si in consecinta magnetizarea sa totala, prin puterea campului demagnetizant al jHc.
Unitatea standard de masura folosita pentru puterea campului magnetic este A/m (Amper pe metru). De asemenea veti intalni de multe ori vechea unitate de masura, Oe (Oersted).
What does maximum energy product mean? Ce inseamna produs energetic maxim?

The maximum energy product is a measurement for the maximum amount of magnetic energy stored in a magnet. It concerns the product maximally attainable with a material made out of flux density B and field strength H.
The standard unit of measurement is kJ/m³ (Kilojoule per cubic meter) or MGOe (Mega-Gauss-Oersted).
You can use either a small magnet with a higher energy product or a large magnet with a smaller energy product for the same use.
Produsul energetic maxim este o masura pentru cantitatea maxima de energie magnetica stocata intr-un magnet. Aceasta se refera la produsul maxim atins cu un material realizat din densitatea fluxului B si forta campului H.
Unitatea de masura standard este kJ/m³ (Kilojul pe metru patrat) sau MGOe (Mega-Gauss-Oersted).
Puteti folosi fie un magnet mic cu un produs energetic mai mare sau un magnet mare cu un produs energetic mai mic pentru aceeasi utilizare.